JASA Reproducibility Awardees
The JASA Editorial Board and Associate Editors for Reproducibility would like to congratulate the winners on their exceptional contributions to computational reproducibility within the statistical field! 🏅
These awards are selected by the JASA Associate Editors of Reproducibility (AERs) and a description of the JASA Reproducibility Award is described here.
2024
Yabo Niu, Yang Ni, Debdeep Pati, Bani K. Mallick. (2023). Covariate-Assisted Bayesian Graph Learning for Heterogeneous Data, Journal of the American Statistical Association, DOI: 10.1080/01621459.2023.2233744
- Code to reproduce results: https://www.tandfonline.com/doi/suppl/10.1080/01621459.2023.2233744?scroll=top
Stéphane Guerrier, Christoph Kuzmics, Maria-Pia Victoria-Feser. (2024). Assessing COVID-19 Prevalence in Austria with Infection Surveys and Case Count Data as Auxiliary Information, Journal of the American Statistical Association, DOI: 10.1080/01621459.2024.2313790
- R software package: https://github.com/stephaneguerrier/pempi
- Code to reproduce results: https://stephaneguerrier.github.io/pempi/articles/reproducibility.html
2023
Lucy L. Gao, Jacob Bien, Daniela Witten (2022). Selective Inference for Hierarchical Clustering, Journal of the American Statistical Association, DOI: 10.1080/01621459.2022.2116331
- R software package: http://lucylgao.com/clusterpval
- Code to reproduce results: https://github.com/lucylgao/clusterpval-experiments
Cecilia Balocchi, Sameer K. Deshpande, Edward I. George, Shane T. Jensen (2023). Crime in Philadelphia: Bayesian Clustering with Particle Optimization, Journal of the American Statistical Association, DOI: 10.1080/01621459.2022.2156348
- R software package: https://github.com/cecilia-balocchi/particle-optimization/tree/master/PARTOPT
- Code to reproduce results: https://github.com/cecilia-balocchi/particle-optimization